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Abstract. Automatic art analysis has been mostly focused on classi-
fying artworks into different artistic styles. However, understanding an
artistic representation involves more complex processes, such as iden-
tifying the elements in the scene or recognizing author influences. We
present SemArt, a multi-modal dataset for semantic art understanding.
SemArt is a collection of fine-art painting images in which each image is
associated to a number of attributes and a textual artistic comment, such
as those that appear in art catalogues or museum collections. To evalu-
ate semantic art understanding, we envisage the Text2Art challenge, a
multi-modal retrieval task where relevant paintings are retrieved accord-
ing to an artistic text, and vice versa. We also propose several models for
encoding visual and textual artistic representations into a common se-
mantic space. Our best approach is able to find the correct image within
the top 10 ranked images in the 45.5% of the test samples. Moreover,
our models show remarkable levels of art understanding when compared
against human evaluation.

Keywords: semantic art understanding - art analysis - image-text re-
trieval - multi-modal retrieval

1 Introduction

The ultimate aim of computer vision has always been to enable computers to
understand images the way humans do. With the latest advances in deep learning
technologies, the availability of large volumes of training data and the use of
powerful graphic processing units, computer vision systems are now able to locate
and classify objects in natural images with high accuracy, surpassing human
performance in some specific tasks. However, we are still a long way from human-
like analysis and extraction of high-level semantics from images. This work aims
to push high-level image recognition by enabling machines to interpret art.

To study automatic interpretation of art, we introduce SemArtEI7 a dataset for
semantic art understanding. We build SemArt by gathering a collection of fine-
art images, each with its respective attributes (author, type, school, etc.) as well
as a short artistic comment or description, such as those that commonly appear
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Title: Still-Life

Author: Willem van Aelst
Type: Still-Life

School: Dutch
Timeframe: 1651-1700

The painting depicts a
still-life with roses, tulips
and other flowers resting
on a ledge. It
demonstrates the
elegance, refinement, and
technical brilliance
cultivated during the

Title: Grape Harvest Girl
Author: Ljubomir
Aleksandrova

Type: Genre

School: Other
Timeframe: 1851-1900

In Croatia, Bosnia and
Herzegovina, and in
northern Serbia,
depending on the kind of
harvest, people celebrate
harvest season by
dressing themselves with

painter's formative years fruits of the harvest.

in ltaly.

Fig. 1. SemArt dataset samples. Each sample is a triplet of image, attributes and
artistic comment.

in art catalogues or museum collections. Artistic comments involve not only
descriptions of the visual elements that appear in the scene but also references
to its technique, author or context. Some examples of the dataset are shown in
Figure [I]

We address semantic art understanding by proposing a number of models
that map paintings and artistic comments into a common semantic space, thus
enabling comparison in terms of semantic similarity. To evaluate and benchmark
the proposed models, we design the Text2Art challenge as a multi-modal retrieval
task. The aim of the challenge is to evaluate whether the models capture enough
of the insights and clues provided by the artistic description to be able to match
it to the correct painting.

A key difference with previously proposed methods for semantic understand-
ing of natural images (e.g. MS-COCO dataset [15]) is that our system relies
on background information on art history and artistic styles. As already noted
in previous work [35/4], paintings are substantially different from natural im-
ages in several aspects. Firstly, paintings, unlike natural images, are figurative
representations of people, objects, places or situations which may or may not
correspond to the real world. Secondly, the study of fine-art paintings usually re-
quires previous knowledge about history of art, different artistic styles as well as
contextual information about the subjects represented. Thirdly, paintings com-
monly exhibit one or more layers of abstraction and symbolism which creates
ambiguity in interpretation.

In this work, we harness existing prior knowledge about art and deep neural
networks to model understanding of fine-art paintings. Specifically, our contri-
butions are:

1. to introduce the first dataset for semantic art understanding in which each
sample is a triplet of images, attributes and artistic comments,

2. to propose models to map fine-art paintings and their high-level artistic
descriptions onto a joint semantic space,

3. to design an evaluation protocol based on multi-modal retrieval for semantic
art understanding, so that future research can be benchmarked under a
common, public framework.
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Table 1. Datasets for art analysis . Meta and Text columns state if image metadata
and textual information are provided, respectively.

Dataset #Paintings Meta Text Task

PRINTART [2] 988 3 7 Classi cation and Retrieval
Painting-91 [LZ] 4,266 3 7 Classi cation
Rijksmuseum [19] 3,593 3 7 Classi cation
Wikipaintings [11] 85,000 3 7 Classi cation

Paintings [3] 8,629 7 7 Object Recognition

Face Paintings [4] 14,000 7 7 Face Retrieval

VisualLink [22] 38,500 3 7 Instance Retrieval
Art500k [L8] 554,198 3 7 Classi cation

SemArt 21,383 3 3 Semantic Retrieval

2 Related Work

With the digitalization of large collections of ne-art paintings and the emer-
gence of publicly available online art catalogs such as WikiArE] or the Web
Gallery of ArtE], computer vision researchers become interested in analyzing ne-
art paintings automatically. Early work [10,23]2]12] proposes methods based on
handcrafted visual features to identify an author and/or a speci c style in a piece
of art. Datasets used in these kinds of approaches, such as PRINTART[2] and
Painting-91 [12], are rather small, with 988 and 4,266 painting images, respec-
tively. Mensink and Van Gemert introduce in [19] the large-scale Rijksmuseum
dataset for multi-class prediction, consisting on 112,039 images from artistic ob-
jects, although only 3,593 are from ne-art paintings. With the success of convo-
lutional neural networks (CNN) in large-scale image classi cation [14], deep fea-
tures from CNNs replace handcrafted image representations in many computer
vision applications, including painting image classi cation [1[11}21.2%,1%5,18], and
larger datasets are made publicly available[[1[,18]. In these methods, paintings
are fed into a CNN to predict its artistic style or author by studying its visual
aesthetics.

Besides painting classi cation, other work is focused on exploring image re-
trieval in artistic paintings. For example, in [Z], monochromatic painting images
are retrieved by using artistic-related keywords, whereas in[[22] a pre-trained
CNN is ne-tuned to nd paintings with similar artistic motifs. Crowley and
Zisserman [[4] explore domain transfer to retrieve image of portraits from real
faces, in the same way as [3] and [6] explore domain transfer to perform object
recognition in paintings.

A summary of the existing datasets for ne-art understanding is shown in
Table [1. In essence, previous work studies art from an aesthetics point of view
to classify paintings according to author and style [2,12,19,11,18], to nd rel-
evant paintings according to a query input [2[4,22] or to identify objects in

2 http://www.wikiart.org
3 https:/iwww.wga.hu/
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artistic representations [3]. However, understanding art involves also identifying
the symbolism of the elements, the artistic in uences or the historical context
of the work. To study such complex processes, we propose to interpret ne-
art paintings in a semantic way by introducing SemArt, a multi-modal dataset
for semantic art understanding. To the best of our knowledge, SemArt is the
rst corpus that provides not only ne-art images and their attributes, but also
artistic comments for the semantic understanding of ne-art paintings.

3 SemArt Dataset

3.1 Data Collection

To create the SemArt dataset, we collect artistic data from the Web Gallery
of Art (WGA), a website with more than 44,809 images of European ne-art
reproductions between the 8th and the 19th century. WGA provides links to all
their images in a downloadable comma separated values le (CSV). In the CSV
le, each image is associated with some attributes or metadata: author, author's
birth and death, title, date, technique, current location, form, type, school and
time-line. Following the links provided in the CSV le, we only collect images
from artworks whose eld form is set as painting, as opposite to images of other
forms of art such as sculpture or architecture.

We create a script to collect artistic comments for each painting image, as
they are not provided in the aforementioned CSV le. We omit images that are
not associated to any comment and we remove irrelevant metadata elds, such
as author's birth and death and current location. The nal size of the cleaned
collection is downsampled to 21,384 triplets, where each triplet is formed by an
image, a text and a number of attributes.

3.2 Data Analysis

For each sample, the metadata is provided as a set of seven elds, which describe
the basic attributes of its associated painting: Author, Title, Date, Technique
Type, School and Timeframe. In total, there are 3,281 di erent authors, the
most frequent one being Vincent van Gogh with 327 paintings. There are 14,902
di erent titles in the dataset, with 38.8% of the paintings presenting a non-unique
titte. Among all the titles, Still-Life and Self-Portrait are the most common ones.
Technique and Date elds are not available for all samples, but provided for
completeness.Type eld classi es paintings according to ten di erent genres,
such as religious, landscape or portrait. There are 26 artistic schools in the
collection, Italian being the most common, with 8,860 paintings and Finnish the
least frequent with just 5 samples. Also, there are 22 di erent timeframes, which
are periods of 50 years evenly distributed between 801 and 1900. The distribution
of values over the elds Type, Schooland Timeframe is shown in Figure 2. With
respect to artistic comments, the vocabulary set follows the Zipf's law [17]. Most
of the comments are relatively short, with almost 70% of the them containing



How to Read Paintings 5

Timeframe School Type

Fig. 2. Metadata distribution . Distribution of samples within the SemArt dataset
in Timeframe, School and Type attributes.

100 words or less. Images are provided in di erent aspect ratios and sizes. The
dataset is randomly split into training, validation and test sets with 19,244, 1,069
and 1,069 triplets, respectively.

4 Text2Art Challenge

In what follows, we use bold style to refer to vectors and matrices (e.gx and
W ). Given a collection of artistic samplesK , the k-th sample in K is given by
the triplet ( imgy; comy;atty), being imgg the artistic image, comy the artistic
comment and att, the artistic attributes. Images, comments and attributes are
input into speci ¢ encoding functions, fimg , fcom, fat, t0 Map raw data from
the corpus into vector representations,iy, Cx, ak, as:

ik = fimg (iMgk; img) 1)
Ck = feom(COMK; com) 2
ak = far (atty; ar) 3)

where img, com and ax are the parameters of each encoding function.
As comment encodingscg, and attribute encodings, ax, are both from tex-
tual data, a joint textual vector, ty can be obtained as:

tk = Ck  ag 4)

where is vector concatenation.

The transformation functions, gvis and gext , can be de ned as the functions
that project the visual and the textual encodings into a common multi-modal
space. The projected vectorg® and pie are then obtained as:

PYS = Ouis (ik; vis) ©)

pﬁeXt = Otext (tk; text) (6)



6 N. Garcia and G. Vogiatzis

being is and x the parameters of each transformation function.

For a given similarity function d, the similarity between any text (i.e. pair
of comments and attributes) and any image inK is measured as the distance
between their projections:

d(pi*;p"™) = d(Grext (ti; text )i Guis (i vis)) )

In semantic art understanding, the aim is to learn fing, fcom, fat, Ovis
and gex: Such that images, comments and attributes from the same sample are
mapped closer in terms ofd than images, texts and attributes from di erent
samples: _ .

d(pi* s pi®) <d(pi*;p/®) forall kij j Kj 8)
and
d(pi;pys) < d(p;™ pys) forall k;j j Kj 9)

To evaluate semantic art understanding, we propose the Text2Art challenge
as a multi-modal retrieval problem. Within Text2Art, we de ne two tasks: text-
to-image retrieval and image-to-text retrieval. In text-to-image retrieval, the aim
is to nd the most relevant painting in the collection, img 2 K, given a query
comment and its attributes:

img = argmin d(pi™* ; p;**) (10)
img j 2K
Similarly, in the image-to-text retrieval task, when a painting image is given,
the aim is to nd the comment and the attributes, com 2 K andatt 2 K ,
that are more relevant to the visual query:

com;att = argmin d(p/™;py®) (11)
comj;att ; 2K

5 Models for Semantic Art Understanding

We propose several models to learn meaningful textual and visual encodings
and transformations for semantic art understanding. First, images, comments
and attributes are encoded into visual and textual vectors. Then, a multi-modal
transformation model is used to map these visual and textual vectors into a
common multi-modal space where a similarity function is applied.

5.1 Visual Encoding

We represent each painting image as a visual vectoriy, using convolutional
neural networks (CNNs). We use di erent CNN architectures, such as VGG16
[24], di erent versions of ResNet [8] and RMAC [26].

VGG16 [24] contains 13 3x3 convolutional layers and three fully-connected lay-
ers stacked on top of each other. We use the output of one of the fully
connected layers as the visual encoding.
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ResNet [8] uses shortcut connections to connect the input of a layer to the out-
put of a deeper layer. There exist many versions depending on the number of
layers, such as ResNet50 and ResNet152 with 50 and 152 layers, respectively.
We use the output of the last layer as the visual encoding.

RMAC is a visual descriptor introduced by Tolias et al. in [26] for image re-
trieval. The activation map from the last convolutional layer from a CNN
model is max-pooled over several regions to obtain a set of regional features.
The regional features are post-processed, sum-up together and normalized
to obtain the nal visual representation.

5.2 Textual Encoding

With respect to the textual information, comments are encoded into a comment
vector, ¢k, and attributes are encoded into an attribute vector, ax. To get the
joint textual encoding, ti, both vectors are concatenated.

Comment Encoding To encode comments into a comment vectorcg, we
rst build a comment vocabulary, V. Ve contains all the alphabetic words that
appear at least ten times in the training set. The comment vector is obtained
using three di erent techniques: a comment bag-of-words (BOW), a comment
multi-layer perceptron (MLP ¢) and a comment recurrent model (LSTMc).

BOW ¢ each comment is encoded as term frequency - inverse document fre-
qguency (tf-idf) vector by weighting each word in the comment by its relevance
within the corpus.

MLP ¢ comments are encoded as a tf-idf vectors and fed into a fully connected
layer with tanh activation 4 and " ,-normalization. The output of the normal-
ization layer is used as the comment encoding.

LSTM ¢ each sentence in a comment is encoded into a sentence vector using a
2,400 dimensional pre-trained skip-thought model [13]. Sentence vectors are
input into a long short-term memory network (LSTM) [9]. The last state of
the LSTM is “,-normalized and used as the comment encoding.

Attribute Encoding We use the attribute eld Title in the metadata to pro-
vide an extra textual information to our model. We propose three di erent tech-
nigques to encode titles into attribute encodings,ag: an attribute bag-of-words
(BOW a) an attribute multi-layer perceptron (MLP a) and an attribute recurrent
model (LSTMa).

BOW a as in comments, titles are encoded as a tf-idf-weighted vector using a
title vocabulary, V. Vr is built with all the alphabetic words in the titles of
the training set.

z

4 tanh(z) = £-¢

eZ+e 2
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CCA Model CML Model AMD Model

Fig. 3. Multi-modal transformation models . Models for mapping textual and vi-
sual representations into a common multi-modal space.

MLP a also as in comments, tf-idf encoded titles are fed into a fully connected
layer with tanh activation and a “,-normalization. The output of the nor-
malization layer is used as the attribute vector.

LSTM a in this case, each word in a title is fed into an embedding layer fol-
lowed by a LSTM network. The output of the last state of the LSTM is
“2-normalized and used as the attribute encoding.

5.3 Multi-Modal Transformation

The visual and textual encodings, ik and tx respectively, encode visual and
textual data into two dierent spaces. We use a multi-modal transformation
model to map the visual and textual representations into a common multi-modal
space. In this common space, textual and visual information can be compared
in terms of the similarity function d. We propose three di erent models, which
are illustrated in Figure 3.

CCA Canonical Correlation Analysis (CCA) [7] is a linear approach for pro-
jecting data from two di erent sources into a common space by maximizing
the normalized correlation between the projected data. The CCA projection
matrices are learnt by using training pairs of samples from the corpus. At
test time, the textual and visual encodings from a test sample are projected
using these CCA matrices.

CML Cosine Margin Loss (CML) is a deep learning architecture trained end-
to-end to learn the visual and textual encodings and their projections all
at once. Each image encoding is fed into a fully connected layer followed
by a tanh activation function and a ",-normalization layer to project the
visual feature, i, into a D -dimensional space, obtaining the projected visual
vector p}"s . Similarly, each textual vector ty, is input into another network
with identical layer structure (fully connected layer with tanh activation and
“o-normalization) to map the textual feature into the same D -dimensional
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space, obtaining the projected textual vector pf*t. We train the CML model

with both positive (k = j) and negative (k & J) pairs of textual and visual
data and cosine similarity with margin as the loss function:

; 1 cos(py's; ptext); ifk=j

LCML(p\liIS; p}ext) _ .(pk \E:Js zext o J (12)
max(0; cos(pi's; p;™F)  m); if k6 j

where cos is the cosine similarity between two normalized vectors and m is
the margin hyperparameter.

AMD Augmented Metadata (AMD) is a model in which the network is in-
formed with attribute data for an extra alignment between the visual and the
textual encodings. The AMD model consists on a deep learning architecture
that projects both visual and textual vectors into the common multi-modal
space whereas, at the same time, ensures that the projected encodings are
meaningful in the art domain. As in the CML model, image and textual
encodings are projected into D-dimensional vectors using fully connected
layers, and the loss between the multi-modal transformations is computed
using a cosine margin loss. Attribute metadata is used to train a pair of clas-
sifiers on top of the projected data (Figure 3, AMD Model), each classifier
consisting of a fully connected layer without activation. Metadata classifiers
are trained using a standard cross entropy classification loss function:

LmeTa(Xx;class) = log (‘;‘%) (13)
j

which contribute to the total loss of the model in addition to the cosine
margin loss. The total loss of the model is then computed as:

LAMD(ptkeXt; p}/is; Ip}(ext; Ip}/is) = (1 2 )LCML(DEXt; p}/is)
+ Lmeta(Pid ) (14)

+ Lmera(p}™s; loyis)

where Iptkext and Ip}/is are the class labels of the k-th text and the j-th image,
respectively, and  is the weight of the classifier loss.

6 Experiments

Experimental Details. In the image encoding part, each network is initialized
with its standard pre-trained weights for image classification. Images are scaled
down to 256 pixels per side and randomly cropped into 224 224 patches. Vi-
sual data is augmented by randomly flipping images horizontally. In the textual
encoding part, the dimensionality of LSTM hidden state for comments is 1,024,
whereas in the LSTM for titles is 300. The title vocabulary size is 9,092. Skip
thoughts dimensionality is set to 2,400. In the multi-modal transformation part,
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Table 2. Visual Domain Adaptation. Transferability of visual features from the
natural image classification domain to the Text2Art challenge.

Encoding Text-to-Image Image-to-Text

Img Dim R@1 R@5 R@10 MR R@1 R@5 R@10 MR
VGG16 FC1 4,096 0.069 0.129 0.174 115 0.061 0.129 0.180 121
VGG16 Fc2 4,096 0.051 0.097 0.109 278 0.051 0.085 0.103 275
VGG16 FC3 1,000 0.101 0.211 0.285 44 0.094 0.217 0.283 51
ResNet50 1,000 0.114 0.231 0.304 42 0.114 0.242 0.318 44
ResNet152 1,000 0.108 0.254 0.343 36 0.118 0.250 0.321 36
RMAC vaGaie 512 0.092 0.206 0.286 41 0.084 0.202 0.293 44
RMAC Res50 2,048 0.084 0.202 0.293 48 0.097 0.215 0.288 49
RMAC Res152 2,048 0.115  0.233 0.306 44 0.103 0.238 0.305 44

the CCA matrices are learnt using scikit-learn [20]. For the deep learning archi-
tectures, we use Adam optimizer and the learning rate is set to 0:0001, m to
0:1 and  to 0.01. Training is conducted in mini batches of 32 samples. Cosine
similarity is used as the similarity function d in all of our models.

Text2Art Challenge Evaluation. Painting images are ranked according to
their similarity to a given text, and vice versa. The ranking is computed on the
whole set of test samples and results are reported as median rank (MR) and
recall rate at K (RQK), with K being 1, 5 and 10. MR is the value separating
the higher half of the relevant ranking position amount all samples, so the lower
the better. Recall at rate K is the rate of samples for which its relevant image
is in the top K positions of the ranking, so the higher the better.

6.1 Visual Domain Adaptation

We first evaluate the transferability of visual features from the natural image
domain to the artistic domain. In this experiment, texts are encoded with the
BOWe . approach with V¢ = 3,000. As multi-modal transformation model, a 128-
dimensional CCA is used. We extract visual encodings from networks pre-trained
for classification of natural images without further fine-tunning or refinement.
For the VGG16 model, we extract features from the first, second and third fully
connected layer (VGG16rc1, VGG16rcz and VGG16Fcs). For the ResNet mod-
els, we consider the visual features from the output of the networks (ResNet50
and ResNet152). Finally, RMAC representation is computed using a VGG16, a
ResNet50 and a ResNet152 (RMACvGGi6 , RMACRes50 and RMACRes152). Re-
sults are detailed in Table[2} As semantic art understanding is a high-level task,
it is expected that representations acquired from deeper layers perform better,
as in the VGG16 models, where the deepest layer of the network obtains the
best performance. RMAC features respond well when transferring from natural
images to art, although ResNet models obtain the best performance. Considering
these results, we use ResNets as visual encoders in the following experiments.
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Table 3. Text Encoding in Art. Comparison between different text encodings in
the Text2Art challenge.

Encoding Text-to-Image Image-to-Text
Com Att RQ1 R@5 R@10 MR R@1 R@5 R@10 MR
LSTMc LSTMa 0.053 0.162 0.256 33 0.053 0.180 0.268 33
MLPc LSTMa 0.089 0.260 0.376 21 0.093 0.249 0.363 21
MLPc MLPa 0.137 0.306 0.432 16 0.140 0.317 0.436 15
BOWc BOWa 0.144 0.332 0.454 14 0.138  0.327  0.457 14

6.2 Text Encoding in Art

We then compare the performance between the different text encoding models in
the Text2Art challenge. In this experiment, images are encoded with a ResNet50
network and the CML model is used to learn the mapping of the visual and the
textual encodings into a common 128-dimensional space. The different encoding
methods are compared in Table [3] The best performance is obtained when using
the simplest bag-of-words approach both for comments and titles (BOWe and
BOWa), although the multi-layer perceptron model (MLPc and MLPa) obtain
similar results. Models based on recurrent networks (LSTMc and LSTMa) are
not able to capture the insights of semantic art understanding. These results
are consistent with previous work [27], which shows that text recurrent models
perform worse than non-recurrent methods for multi-modal tasks that do not
require text generation.

6.3 Multi-Modal Models for Art Understanding

Finally, we compare the three proposed multi-modal transformation models in
the Text2Art challenge: CCA, CML and AMD. For the AMD approach, we
use four different attributes to inform the model: Type (AMDT), TimeFrame
(AMDTF), School (AMDs) and Author (AMDA). ResNet50 is used to encode
visual features. Results are shown in Table [4, Random ranking results are pro-
vided as reference. Overall, the best performance is achieved with the CML
model and bag-of-words encodings. CCA achieves the worst results among all
the models, which suggests that linear transformations are not able to adjust
properly to the task. Surprisingly, adding extra information in the AMD models
does not lead to further improvement over the CML approach. We suspect that
this might be due to the unbalanced number of samples within the classes of the
dataset. Qualitative results of the CML model with ResNet50 and bag-of-words
encodings are shown in Figures [4| and [5} In the positive examples (Figure [4)),
not only the ground truth painting is ranked within the top five returned im-
ages, but also all the images within the top five are semantically similar to the
query text. In the unsuccessful examples (Figure [5)), although the ground truth
image is not ranked in the top positions of the list, the algorithm returns images
that are semantically meaningful to fragments of the text, which indicates how
challenging the task is.
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